1. TA(Technical Analysis) Library in Python
- Pandas, Numpy 기반을 작성되었고, financial time Series dataset(Open, Close, High, Low, Volume) 자료로 지표자료를 계산합니다.
- 라이브러리 사용 URL: https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html
- github URL: https://github.com/bukosabino/ta
- matplotlib : https://matplotlib.org/3.5.1/index.html
2. 사용가능한 지표
Volume
- Money Flow Index (MFI)
- Accumulation/Distribution Index (ADI)
- On-Balance Volume (OBV)
- Chaikin Money Flow (CMF)
- Force Index (FI)
- Ease of Movement (EoM, EMV)
- Volume-price Trend (VPT)
- Negative Volume Index (NVI)
- Volume Weighted Average Price (VWAP)
Volatility
- Average True Range (ATR)
- Bollinger Bands (BB)
- Keltner Channel (KC)
- Donchian Channel (DC)
- Ulcer Index (UI)
Trend
- Simple Moving Average (SMA)
- Exponential Moving Average (EMA)
- Weighted Moving Average (WMA)
- Moving Average Convergence Divergence (MACD)
- Average Directional Movement Index (ADX)
- Vortex Indicator (VI)
- Trix (TRIX)
- Mass Index (MI)
- Commodity Channel Index (CCI)
- Detrended Price Oscillator (DPO)
- KST Oscillator (KST)
- Ichimoku Kinkō Hyō (Ichimoku) (일목균형표)
- Parabolic Stop And Reverse (Parabolic SAR)
- Schaff Trend Cycle (STC)
Momentum
- Relative Strength Index (RSI)
- Stochastic RSI (SRSI)
- True strength index (TSI)
- Ultimate Oscillator (UO)
- Stochastic Oscillator (SR)
- Williams %R (WR)
- Awesome Oscillator (AO)
- Kaufman's Adaptive Moving Average (KAMA)
- Rate of Change (ROC)
- Percentage Price Oscillator (PPO)
- Percentage Volume Oscillator (PVO)
Others
- Daily Return (DR)
- Daily Log Return (DLR)
- Cumulative Return (CR)
3. 사용법
설치
pip install --upgrade ta
전체 지표 계산코드. 한번에 계산할 수 있는 모든 지표를 처리하는데, 지표가 많다보니 경고가 나옵니다.
계산 시간도 있을 테고, 비효율적이라 추천하지는 않습니다.
import pandas as pd
from ta import add_all_ta_features
from ta.utils import dropna
# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')
# Clean NaN values
df = dropna(df)
# Add all ta features
df = add_all_ta_features(
df, open="Open", high="High", low="Low", close="Close", volume="Volume_BTC")
4. 샘플
https://github.com/bukosabino/ta/tree/master/examples_to_use
import numpy as np
import pandas as pd
from trade.util.db_helper import *
from ta.trend import IchimokuIndicator
import matplotlib.dates as mdates
from mplfinance.original_flavor import candlestick_ohlc
from matplotlib import rc, font_manager
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
# 종목코드
code = '010060'
db_name = 'RSIStrategy'
# 300건으로 분석
sql = f"""
SELECT *
FROM (
SELECT `index`, open, high, low, close, volumn as volume FROM `{code}` ORDER BY `index` DESC LIMIT 300
)
ORDER BY `INDEX`
"""
# database에서 일별 거래정보 조회
cur = execute_sql(db_name, sql)
cols = [column[0] for column in cur.description]
df = pd.DataFrame.from_records(data=cur.fetchall(), columns=cols)
df = df.set_index('index')
# 일목균형표 데이터 생성
id_ichimoku = IchimokuIndicator(high=df['high'], low=df['low'], visual=True, fillna=True)
df['span_a'] = id_ichimoku.ichimoku_a()
df['span_b'] = id_ichimoku.ichimoku_b()
df['base_line'] = id_ichimoku.ichimoku_base_line()
df['conv_line'] = id_ichimoku.ichimoku_conversion_line()
# 한글폰트
f_path = "C:/windows/Fonts/malgun.ttf"
font_manager.FontProperties(fname=f_path).get_name()
rc('font', family='Malgun Gothic')
fig = plt.figure(figsize=(12, 8))
fig.set_facecolor('w')
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
# fig, ax = plt.subplots(1, 1, figsize=(10, 6), constrained_layout=True)
axs = []
axs.append(plt.subplot(gs[0]))
axs.append(plt.subplot(gs[1], sharex=axs[0]))
for ax in axs:
ax.xaxis.set_major_locator(mdates.MonthLocator(bymonth=range(1, 13)))
ax.xaxis.set_minor_locator(mdates.MonthLocator())
# ax. 캔들 차트
ax = axs[0]
x = np.arange(len(df.index))
ohlc = df[['open', 'high', 'low', 'close']].astype(int).values
dohlc = np.hstack((np.reshape(x, (-1, 1)), ohlc))
candlestick_ohlc(ax, dohlc, width=0.5, colorup='r', colordown='b')
# 일목균형표 추가
# ax.plot(df.close, label='close', linestyle='solid', color='purple', linewidth=2)
ax.plot(df.span_a, label='span_a', linestyle='solid', color='pink')
ax.plot(df.span_b, label='span_b', linestyle='solid', color='lightsteelblue')
ax.plot(df.base_line, label='base_line', linestyle='solid', color='green', linewidth=2)
ax.plot(df.conv_line, label='conv_line', linestyle='solid', color='darkorange')
ax.grid(True, axis='y', color='grey', alpha=0.5, linestyle='--')
ax.fill_between(df.index, df.span_a, df.span_b, alpha=0.3)
ax.set_title(f'OCI({code}) - 일목균형표')
ax.legend()
# ax2. 거래량 차트
ax2 = axs[1]
ax2.bar(x, df['volume'], color='k', width=0.6, align='center')
plt.tight_layout()
plt.show()
end.
'Etc > 주식 자동 매매' 카테고리의 다른 글
Kiwoom - ImportError: DLL load failed: 지정된 프로시저를 찾을 수 없습니다. (0) | 2022.03.20 |
---|---|
[Python] finance 라이브러리 스크랩 (0) | 2022.03.20 |
해외 일목균형표 분석 URL (0) | 2022.03.19 |
[Python] 캔들차트 표시 (0) | 2022.03.15 |
[Python] 백테스트 - backtrader를 이용한 RSI_SMA 샘플 (0) | 2022.03.14 |